Skip to main content

StatsCMSSDCDF

StatsCMSSDCDF (C, n)

The StatsCMSSDCDF function returns the cumulative distribution function of the C distribution (mean square successive difference), which is

f(C,n)=Γ(2m+2)a22m+1[Γ(m+1)]2(1C2a2)m,\displaystyle f(C, n)=\frac{\Gamma(2 m+2)}{a 2^{2 m+1}[\Gamma(m+1)]^{2}}\left(1-\frac{C^{2}}{a^{2}}\right)^{m},

where

a2=(n2+2n12)(n2)(n313n+24),\displaystyle a^{2}=\frac{\left(n^{2}+2 n-12\right)(n-2)}{\left(n^{3}-13 n+24\right)}, m=(n4n313n2+37n60)2(n313n+24).\displaystyle m=\frac{\left(n^{4}-n^{3}-13 n^{2}+37 n-60\right)}{2\left(n^{3}-13 n+24\right)} .

The distribution (for C >0) can then be expressed as

F(C,n)=Γ(2m+2)a22m+1[Γ(m+1)]2C2F1(12,m,32,C2a2),\displaystyle F(C, n)=\frac{\Gamma(2 m+2)}{a 2^{2 m+1}[\Gamma(m+1)]^{2}} C_{2} F_{1}\left(\frac{1}{2},-m, \frac{3}{2}, \frac{C^{2}}{a^{2}}\right),

where

2F1\displaystyle { }_{2} F_{1}

is the Hypergeometric function HyperG2F1.

References

Young, L.C., On randomness in ordered sequences, Annals of Mathematical Statistics, 12, 153-162, 1941.

See Also

Statistical Analysis, StatsCMSSDCDF, StatsSRTest