Skip to main content

sphericalBessY

sphericalBessY (n, x [, accuracy])

The sphericalBessY function returns the spherical Bessel function of the second kind and order n.

yn(x)=π2xYn+1/2(x).\displaystyle y_{n}(x)=\sqrt{\frac{\pi}{2 x}} Y_{n+1 / 2}(x) . y0(x)=cos(x)xy1(x)=cos(x)x2sin(x)xy2(x)=(1x3x3)cos(x)3x2sin(x).\begin{array}{l} \displaystyle y_{0}(x)=-\frac{\cos (x)}{x} \\ \\ \displaystyle y_{1}(x)=-\frac{\cos (x)}{x^{2}}-\frac{\sin (x)}{x} \\ \\ \displaystyle y_{2}(x)=\left(\frac{1}{x}-\frac{3}{x^{3}}\right) \cos (x)-\frac{3}{x^{2}} \sin (x) . \end{array}

Details

See the bessI function for details on accuracy and speed of execution.

See Also

sphericalBessYD, sphericalBessJ

References

Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", 446 pp., Dover, New York, 1972.