CommandsStatsCauchyCDFOn this pageStatsCauchyCDF StatsCauchyCDF (x, µ, σ) The StatsCauchyCDF function returns the Cauchy-Lorentz cumulative distribution function F(x;μ,σ)=12+1πtan−1(x−μσ).\displaystyle F(x ; \mu, \sigma)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}\left(\frac{x-\mu}{\sigma}\right) .F(x;μ,σ)=21+π1tan−1(σx−μ). See Also Statistical Analysis, StatsCauchyPDF, StatsInvCauchyCDF