Skip to main content

SinIntegral

SinIntegral (z)

The SinIntegral(z) function returns the sine integral of z.

If z is real, a real value is returned. If z is complex then a complex value is returned.

The SinIntegral function was added in Igor Pro 7.00.

Details

The sin integral is defined by

Si(z)=0zsin(t)tdt.\displaystyle \operatorname{Si}(z)=\int_{0}^{z} \frac{\sin (t)}{t} d t .

IGOR computes the SinIntegral using the expression:

Si(z)=z1F2(12;32,32;z24).\displaystyle \operatorname{Si}(z)=z_{1} F_{2}\left(\frac{1}{2} ; \frac{3}{2}, \frac{3}{2} ;-\frac{z^{2}}{4}\right) .

References

Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1972. Chapter 5.

See Also

CosIntegral, ExpIntegralE1, HyperGPFQ