Skip to main content

sphericalHarmonics

sphericalHarmonics (L, M, θ, φ)

The sphericalHarmonics function returns the complex-valued spherical harmonics

YLM(θ,ϕ)=(1)M2L+14π(LM)!(L+M)!PLM(cos(θ))eiMϕ,\displaystyle Y_{L}^{M}(\theta, \phi)=(-1)^{M} \sqrt{\frac{2 L+1}{4 \pi} \frac{(L-M)!}{(L+M)!}} P_{L}^{M}(\cos (\theta)) e^{i M \phi},

where

PLM(cos(θ))\displaystyle P_{L}^{M}(\cos (\theta))

is the associated Legendre function.

See Also

legendreA

Demos

Open Spherical Harmonics Demo

Open Numerical Integation Demo

References

Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.