Skip to main content

laguerreA

laguerreA (n, k, x)

The LaguerreA function returns the associated Laguerre polynomial of degree n (positive integer), index k (nonnegative integer) and argument x. The associated Laguerre polynomials are defined by

Lnk(x)=(1)kdkdxk[Ln+k(x)],\displaystyle L_{n}^{k}(x)=(-1)^{k} \frac{d^{k}}{d x^{k}}\left[L_{n+k}(x)\right],

where

Ln+k(x)\displaystyle L_{n+k}(x)

is the Laguerre polynomial.

See Also

laguerre, laguerreGauss

References

Arfken, G., Mathematical Methods for Physicists, Academic Press, New York, 1985.