Skip to main content

laguerre

laguerre (n, x)

The laguerre function returns the Laguerre polynomial of degree n (positive integer) and argument x. The polynomials satisfy the recurrence relation:

(n+1) Laguerre (n+1,x)=(2n+1x) Laguerre (n,x)n Laguerre (n1,x),\displaystyle (n+1) \text { Laguerre }(n+1, x)=(2 n+1-x) \text { Laguerre }(n, x)-n \text { Laguerre }(n-1, x),

with the initial conditions

 Laguerre (0,x)=1\displaystyle \text { Laguerre }(0, x)=1

and

 Laguerre (1,x)=1x.\displaystyle \text { Laguerre }(1, x)=1-x .

See Also

laguerreA, laguerreGauss, chebyshev, chebyshevU, hermite, hermiteGauss, legendreA