The laguerre function returns the Laguerre polynomial of degree n (positive integer) and argument x. The polynomials satisfy the recurrence relation:
(n+1) Laguerre (n+1,x)=(2n+1−x) Laguerre (n,x)−n Laguerre (n−1,x),
with the initial conditions
Laguerre (0,x)=1
and
Laguerre (1,x)=1−x.
See Also
laguerreA, laguerreGauss, chebyshev, chebyshevU, hermite, hermiteGauss, legendreA