Skip to main content

CosIntegral

CosIntegral (z)

The CosIntegral(z) function returns the cosine integral of z.

If z is real, a real value is returned. If z is complex then a complex value is returned.

The CosIntegral function was added in Igor Pro 7.00.

Details

The cosine integral is defined by

Ci(z)=γ+ln(z)+0zcos(t)1tdt,(arg(z)<π)\displaystyle \operatorname{Ci}(z)=\gamma+\ln (z)+\int_{0}^{z} \frac{\cos (t)-1}{t} d t, \quad(|\arg (z)|<\pi)

where γ is the Euler-Mascheroni constant 0.5772156649015328606065.

IGOR computes the cosine integral using the expression:

Ci(z)=Z242F3(1,1;2,2,32;z24)+ln(z)+γ,\displaystyle \operatorname{Ci}(z)=-\frac{Z^{2}}{4}{ }_{2} F_{3}\left(1,1 ; 2,2, \frac{3}{2} ;-\frac{z^{2}}{4}\right)+\ln (z)+\gamma,

References

Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", Dover, New York, 1972. Chapter 5.

See Also

SinIntegral, ExpIntegralE1, HyperGPFQ