Skip to main content

sphericalBessJ

sphericalBessJ (n, x [, accuracy])

The sphericalBessJ function returns the spherical Bessel function of the first kind and order n.

jn(x)=π2xJn+1/2(x).\displaystyle j_{n}(x)=\sqrt{\frac{\pi}{2 x}} J_{n+1 / 2}(x) .

For example:

j0(x)=sin(x)xj1(x)=sin(x)x2cos(x)xj2(x)=(3x31x)sin(x)3x2cos(x).\begin{array}{l} \displaystyle j_{0}(x)=\frac{\sin (x)}{x} \\ \\ \displaystyle j_{1}(x)=\frac{\sin (x)}{x^{2}}-\frac{\cos (x)}{x} \\ \\ \displaystyle j_{2}(x)=\left(\frac{3}{x^{3}}-\frac{1}{x}\right) \sin (x)-\frac{3}{x^{2}} \cos (x) . \end{array}

Details

See the bessI function for details on accuracy and speed of execution.

See Also

sphericalBessJD, sphericalBessY

References

Abramowitz, M., and I.A. Stegun, "Handbook of Mathematical Functions", 446 pp., Dover, New York, 1972.