Skip to main content

binomialln

binomialln (a, b)

The binomialln function returns the natural log of the binomial coefficient for a and b.

 Binomialln(a, b)=ln(a!)-ln(b!)-ln((a-b)!) \displaystyle \text { Binomialln(a, b)=ln(a!)-ln(b!)-ln((a-b)!) }

If you encounter overflow when the arguments are large you can use APMath or Binomialln. For example:

Print binomial(2800,333)
inf
APMath/V result = binomial(2800,333)
9.00198266850214464998502850373044733821917603122330E+441
Print/D binomialln(2800,333)
1017.63747085995
APMath/V result = log(binomial(2800,333))
1.01763747085994889343514158007045064106357813268781E+3

See Also

Statistical Analysis, binomial, StatsBinomialCDF, StatsBinomialPDF, StatsInvBinomialCDF