Skip to main content

hyperGPFQ

hyperGPFQ (waveA, waveB, z)

The hyperGPFQ function returns the generalized hypergeometric function

pFq({a1,ap},{b1,bq};z)=n=0(a1)n(a2)n(ap)nzn(b1)n(b2)n(bq)nn!,\displaystyle { }_{p} F_{q}\left(\left\{a_{1}, \ldots a_{p}\right\},\left\{b_{1}, \ldots b_{q}\right\} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n}\left(a_{2}\right)_{n} \ldots\left(a_{p}\right)_{n} z^{n}}{\left(b_{1}\right)_{n}\left(b_{2}\right)_{n} \ldots\left(b_{q}\right)_{n} n!},

where (a)n is the Pochhammer symbol

(a)n=a(a+1)(a+n1).\displaystyle (a)_{n}=a(a+1) \ldots(a+n-1) .

Note: The series evaluation may be computationally intensive. You can abort the computation by pressing the User Abort Key Combinations.

See Also

hyperG0F1, hyperG1F1, hyperG2F1, CosIntegral, ExpIntegralE1, SinIntegral

References

The PFQ algorithm was developed by Warren F. Perger, Atul Bhalla and Mark Nardin.